588 research outputs found

    Detection of key components of existing bridge in point cloud datasets

    Get PDF
    The cost and effort for modelling existing bridges from point clouds currently outweighs the perceived benefits of the resulting model. Automating the point cloud-to-Bridge Information Models process can drastically reduce the manual effort and cost involved. Previous research has achieved the automatic generation of surfaces primitives combined with rule-based classification to create labelled construction models from point clouds. These methods work very well in synthetic dataset or idealized cases. However, real bridge point clouds are often incomplete, and contain unevenly distributed points. Also, bridge geometries are complex. They are defined with horizontal alignments, vertical elevations and cross-sections. These characteristics are the reasons behind the performance issues existing methods have in real datasets. We propose to tackle this challenge via a novel top-down method for major bridge component detection in this paper. Our method bypasses the surface generation process altogether. Firstly, this method uses a slicing algorithm to separate deck assembly from pier assemblies. It then detects pier caps using their surface normal, and uses oriented bounding boxes and density histograms to segment the girders. Finally, the method terminates by merging over-segments into individual labelled point clusters. Experimental results indicate an average detection precision of 99.2%, recall of 98.3%, and F1-score of 98.7%. This is the first method to achieve reliable detection performance in real bridge datasets. This sets a solid foundation for researchers attempting to derive rich IFC (Industry Foundation Classes) models from individual point clusters

    Structural Performance Monitoring Using a Dynamic Data-Driven BIM Environment

    Get PDF
    Structural health monitoring data has not been fully leveraged to support asset management due to a lack of effective integration with other datasets. A Building Information Modelling (BIM) approach is presented to leverage structural monitoring data in a dynamic manner. The approach allows for the automatic generation of parametric BIM models of structural monitoring systems that include time-series sensor data; and it enables data-driven and dynamic visualisation in an interactive 3D environment. The approach supports dynamic visualisation of key structural performance parameters, allows for the seamless updating and long-term management of data, and facilitates data exchange by generating Industry Foundation Classes (IFC) compliant models. A newly-constructed bridge near Stafford, UK, with an integrated fibre-optic sensor based monitoring system was used to test the capabilities of the developed approach. The case study demonstrated how the developed approach facilitates more intuitive data interpretation, provides a user-friendly interface to communicate with various stakeholders, allows for the identification of malfunctioning sensors thus contributing to the assessment of monitoring system durability, and forms the basis for a powerful data-driven asset management tool. In addition, this project highlights the potential benefits of investing in the development of data-driven and dynamic BIM environments

    Great earthquakes in low strain rate continental interiors: An example from SE Kazakhstan

    Get PDF
    The Lepsy fault of the northern Tien Shan, SE Kazakhstan, extends E-W 120 km from the high mountains of the Dzhungarian Ala-tau, a subrange of the northern Tien Shan, into the low-lying Kazakh platform. It is an example of an active structure that connects a more rapidly deforming mountain region with an apparently stable continental region and follows a known Palaeozoic structure. Field-based and satellite observations reveal an ∼10 m vertical offset exceptionally preserved along the entire length of the fault. Geomorphic analysis and age control from radiocarbon and optically stimulated luminescence dating methods indicate that the scarp formed in the Holocene and was generated by at least two substantial earthquakes. The most recent event, dated to sometime after ∼400 years B.P., is likely to have ruptured the entire ∼120 km fault length in a Mw 7.5–8.2 earthquake. The Lepsy fault kinematics were characterized using digital elevation models and high-resolution satellite imagery, which indicate that the predominant sense of motion is reverse right lateral with a fault strike, dip, and slip vector azimuth of ∼110∘, 50∘S, and 317–343∘, respectively, which is consistent with predominant N-S shortening related to the India-Eurasia collision. In light of these observations, and because the activity of the Lepsy fault would have been hard to ascertain if it had not ruptured in the recent past, we note that the absence of known active faults within low-relief and low strain rate continental interiors does not always imply an absence of seismic hazard

    Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    Get PDF
    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a fivefold variation in tundra LUE was observed. LUE calculated from the functional type cover fractions was also correlated to a spectral vegetation index developed to detect vegetation chlorophyll content. The concurrence of these alternate methods suggest that hyperspectral remote sensing can distinguish functionally distinct vegetation types and can be used to develop regional estimates of photosynthetic LUE in tundra landscapes

    Ground-Based Measurements and Validation Protocols for Flex

    Get PDF
    The upcoming ESA Fluorescence Explorer (FLEX) mission will incorporate ground-based validations for fluorescence parameters and reflectance indices, drawing on an international network of sensors located at eddy covariance tower sites. A program has been initiated by the OPTIMISE program to develop methods and protocols for this network. A sensor system suite under evaluation by OPTIMISE includes the FLoX hyperspectral spectroradiometers. The NASA team at GSFC is participating in this experiment and we report first results from the 2017 summer measurements made above the canopy at the USDA/ARS Beltsville cornfield using the DFLoX and two other leaf-level measurement systems, the MONI-PAM and the FluoWat

    EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans

    Get PDF
    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers

    Assessment of bridge natural frequency as an indicator of scour using centrifuge modelling

    Get PDF
    Funder: Gates Cambridge Trust (GB)Abstract: One of the most prevalent causes of bridge failure around the world is “scour”—the gradual erosion of soil around a bridge foundation due to fast-flowing water. A reliable technique for monitoring scour would help bridge engineers take timely countermeasures to safeguard against failure. Although vibration-based techniques for monitoring structural damage have had limited success, primarily due to insufficient sensitivity, these have tended to focus on the detection of local damage. High natural frequency sensitivity has recently been reported for scour damage. Previous experiments to investigate this have been limited as a result of the cost of full-scale testing and the fact that scaled-down soil-structure models tested outside a centrifuge do not adequately simulate full-scale behaviour. This paper describes the development of what is believed to be the first-ever centrifuge-testing programme to establish the sensitivity of bridge natural frequency to scour. A 1/60 scale model of a two-span integral bridge with 15 m spans was tested at varying levels of scour. For the fundamental mode of vibration, these tests found up to a 40% variation in natural frequency for 30% loss of embedment. Models of three other types of foundation, which represent a shallow pad foundation, a deep pile bent and a deep monopile, were also tested in the centrifuge at different scour levels. The shallow foundation model showed lower frequency sensitivity to scour than the deep foundation models. Another important finding is that the frequency sensitivity to “global scour” is slightly higher than the sensitivity to “local scour”, for all foundation types. The level of frequency sensitivity (3.1–44% per scour depth equivalent to 30% of embedment of scour) detected in this experiment demonstrates the potential for using natural frequency as an indicator of both local and global scour of bridges, particularly those with deep foundations

    EO-1 Data Quality and Sensor Stability with Changing Orbital Precession at the End of a 16 Year Mission

    Get PDF
    The Earth Observing One (EO-1) satellite has completed 16 years of Earth observations in early 2017. What started as a technology mission to test various new advancements turned into a science and application mission that extended many years beyond the satellites planned life expectancy. EO-1s primary instruments are spectral imagers: Hyperion, the only civilian full spectrum spectrometer (430-2400 nm) in orbit; and the Advanced Land Imager (ALI), the prototype for Landsat-8s pushbroom imaging technology. Both Hyperion and ALI instruments have continued to perform well, but in February 2011 the satellite ran out of the fuel necessary to maintain orbit, which initiated a change in precession rate that led to increasingly earlier equatorial crossing times during its last five years. The change from EO-1s original orbit, when it was formation flying with Landsat-7 at a 10:01am equatorial overpass time, to earlier overpass times results in image acquisitions with increasing solar zenith angles (SZAs). In this study, we take several approaches to characterize data quality as SZAs increased. Our results show that for both EO-1 sensors, atmospherically corrected reflectance products are within 5 to 10 of mean pre-drift products. No marked trend in decreasing quality in ALI or Hyperion is apparent through 2016, and these data remain a high quality resource through the end of the mission

    Effectiveness and cost-effectiveness of an educational intervention for practice teams to deliver problem focused therapy for insomnia: rationale and design of a pilot cluster randomised trial

    Get PDF
    Background: Sleep problems are common, affecting over a third of adults in the United Kingdom and leading to reduced productivity and impaired health-related quality of life. Many of those whose lives are affected seek medical help from primary care. Drug treatment is ineffective long term. Psychological methods for managing sleep problems, including cognitive behavioural therapy for insomnia (CBTi) have been shown to be effective and cost effective but have not been widely implemented or evaluated in a general practice setting where they are most likely to be needed and most appropriately delivered. This paper outlines the protocol for a pilot study designed to evaluate the effectiveness and cost-effectiveness of an educational intervention for general practitioners, primary care nurses and other members of the primary care team to deliver problem focused therapy to adult patients presenting with sleep problems due to lifestyle causes, pain or mild to moderate depression or anxiety. Methods and design: This will be a pilot cluster randomised controlled trial of a complex intervention. General practices will be randomised to an educational intervention for problem focused therapy which includes a consultation approach comprising careful assessment (using assessment of secondary causes, sleep diaries and severity) and use of modified CBTi for insomnia in the consultation compared with usual care (general advice on sleep hygiene and pharmacotherapy with hypnotic drugs). Clinicians randomised to the intervention will receive an educational intervention (2 × 2 hours) to implement a complex intervention of problem focused therapy. Clinicians randomised to the control group will receive reinforcement of usual care with sleep hygiene advice. Outcomes will be assessed via self-completion questionnaires and telephone interviews of patients and staff as well as clinical records for interventions and prescribing. Discussion: Previous studies in adults have shown that psychological treatments for insomnia administered by specialist nurses to groups of patients can be effective within a primary care setting. This will be a pilot study to determine whether an educational intervention aimed at primary care teams to deliver problem focused therapy for insomnia can improve sleep management and outcomes for individual adult patients presenting to general practice. The study will also test procedures and collect information in preparation for a larger definitive cluster-randomised trial. The study is funded by The Health Foundation
    corecore